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Abstract

We propose an algorithm for axis-aligned content-aware image retargeting specifically opti-
mized for mobile devices and we show that interactive image retargeting is possible even with
a low-power, mobile CPU.

Considering the limited screen space, we designed a novel user interface that allows the user
to paint saliency maps directly onto the retargeted image while simultaneously updating the
underlying deformation in real time.

Our algorithm incorporates automatic cropping into the image optimization to significantly im-
prove the retargeting quality.

Finally, we apply our algorithm in a picture gallery to greatly improve the screen space utiliza-
tion with respect to existing approaches.
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Zusammenfassung

In dieser Arbeit präsentieren wir einen Algorithmus zum Verändern des Seitenverhältnisses
eines Bildes, engl. Image Retargeting genannt. Dabei berücksichtigen wir den Inhalt des Bildes
und suchen eine achsentreue Abbildung, die wichtige Bildteile möglichst unverändert lässt.
Unser Algorithmus ist speziell optimiert für mobile Geräte. Wir zeigen, wie wir die Bild-
verarbeitungspipeline so implementieren, dass wir auch auf Plattformen mit eingeschränkter
Rechenkapazität interaktive Bildraten erreichen.

Um die begrenzte Bildschirmgrösse zu berücksichtigen, entwickelten wir eine neuartige Be-
nutzeroberfläche, die es erlaubt, wichtige Bildteile direkt im veränderten Bild anzumalen. Dabei
wird sowohl das veränderte Bild als auch eine Karte, die bezeichnet, welche Bildteile wichtig
sind, fortlaufend aktualisiert.

Wir erweitern unseren Algorithmus um das Bild nicht nur zu verformen, sondern, falls nötig,
auch automatisch zu beschneiden, um auf diese Weise zum gewünschten Seitenverhältnis zu
kommen. Dies verbessert die Qualität des veränderten Bildes massgeblich.

Zum Schluss zeigen wir eine praktische Anwendung, eine einfache Bildergalerie, um die mo-
bilen Einsatzmöglichkeiten von Image Retargeting aufzuzeigen.
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Bachelor Thesis

Mobile Image Retargeting

Introduction

Image retargeting allows to change the aspect ratio of a picture, without introducing noticeable dis-
tortion and thus allowing a more efficient use of the screen space. This is particularly important for
mobile devices, but unfortunately these techniques are computationally expensive and so they are
usually used before the content is sent to the mobile device. A novel retargeting algorithm developed
at IGL allows retargeting of images in a few milliseconds when executed on a desktop CPU. The
bachelor thesis will adapt this algorithm to run on the Apple iOS operating system.

Task Description

The candidate will study how to develop mobile applications on iOS, and then implement on iOS the
Axis-Aligned Retargeting algorithm starting from an existing C++ implementation. A touch-based
user interface will be developed to allow the user to interactively paint the saliency map and see
the result of the deformation in real-time. Depending on the skill and interests of the candidate, the
integration of the algorithm inside the iOS web browser will allow the retargeting of web pages directly
on the device.

Detailed Task List:

Learn to use the CVXGEN solver generator: The retargeting algorithm requires to solve a
quadratic programming problem. In this project, we will use the CVXGEN system to generate a
customized solver that can be embedded directly into the binary deployed on the mobile device. The
student will learn how to describe problems using the CVX syntax and then use it to generate the
solver required by the retargeting algorithm.

Experiment with the desktop implementation of Axis Aligned Retargeting: The code is
available on the IGL website.

Learn to develop a basic iOS application: A basic iOS application that renders a single image
using opengl will be developed to familiarize with the iOS SDK.

Compile the core algorithm on an iOS device: The student will implement the algorithm and
run it on an iOS device. No user-interface will be implemented in this stage, the objective is to evaluate
the running time performances and make sure that the solver is able to run on the ARM architecture
with the limited resources available on a iOS device. If necessary, different QP solvers will be tested
until a suitable one is found. Precision of the solution and the running time will be compared with an
equivalent implementation running on a normal workstation.

Design of a touch-based UI: An UI will be developed to allow interactive saliency painting and
tweaking of the algorithms parameters.

Optional extension 1, Cropping: The original formulation of Axis Aligned Retargeting does
not include a cropping factor in the optimization. The integration of cropping in the optimization
process is an interesting research challenge that will greatly improve the practical impact of the mobile
application developed in this thesis.



Optional extension 2, Integration in a web browser: The retargeting algorithm could be
integrated in the safari web browser to retarget webpages to improve their layout on different screen
sizes. The integration will be possible only if iOS provides enough control of the internal components
of the web browser.

Grading scale

The thesis will be graded using the following scale:

6.0 Extraordinary quality, the results are much higher than expected.
5.5 Thesis results are very good; student expanded on the original theme.
5.0 Thesis meets expectations.
4.5 Thesis partially meets expectations and has minor deficits
4.0 Thesis meets minimum quality requirements; but has deficits and is below expectations.

Dr. Daniele Panozzo

Prof. Dr. Olga Sorkine
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1
Introduction

Digital images are captured in various aspect ratios. In still photography, a ratio of 3:2 (1.5)
emerged from the format of analog 35mm film. Since the raise of digital image sensors, the ratio
of 4:3 (1.33) is widely-used, which in turn originates from the beginnings of the motion picture
industry. Video content is usually produced with a specific target screen in mind. Television
has recently switched from a 4:3 (1.66) to a 16:9 (1.77) ratio and cinema also uses widescreen
formats as wide as 2.40:1.

Consumer devices, like computer monitors, tablets and smartphones, use various aspect ratios
and are used to display a large variety of images. For compensating the mismatch in aspect
ratio, the content often gets stretched or cropped, which leads to visual artifacts like unnatural
proportions or invisibility of important parts of the image. The easiest way to avoid this prob-
lems is to proportionally downscale the image to fit the screen, which is called letterboxing due
to the additional horizontal black bars on the screen.

To make full use of the available screen real estate, many methods for non-uniformly scaling
the image to the desired target resolutions have been developed in recent years. These full- or
semiautomatic solutions try to preserve important areas of the image while compensating in the
non-relevant parts.

The goal of this thesis is to bring content-aware image retargeting to mobile devices. The
limitations on computational power, battery life and screen space on handheld devices pose a
challenging problem and new algorithmic solutions are necessary.
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1. Introduction

Figure 1.1.: iOS user interface. Using this touch-based user interface, the user can paint the saliency
map and can preview the image in the target aspect ratio also seeing the cropped image
parts.

2



1.1. Goals

1.1. Goals

Based on the axis-aligned retargeting algorithm designed by [Panozzo et al. 2012], we develop
an application for the iOS operating system. For this we need to solve a quadratic convex
optimization problem and apply a piecewise bilinear warp to the image.

We present a novel touch-based user interface, that enables the user to paint the region of impor-
tance directly onto the retargeted image. This allows interactive refinement of the deformation
on a full screen preview of the resulting image. To provide an interactive experience, we need
our retargeting pipeline to achieve a real-time performance of 30 Hz.

In addition, we present and implement an extension of the axis-aligned deformation that also
incorporates cropping into the process. This increases the flexibility of the optimization and the
quality of the result without significant loss of performance.

Finally we compare the quality of our retargeting method with existing approaches and present
possible applications of mobile image retargeting.

1.2. Overview

In Chapter 2, we give an overview of previous retargeting techniques and relevant work in the
areas of salient region detection and convex optimization.

Chapter 3 describes our algorithm in detail and states the underlying optimization problem. We
explain the influence of the saliency map as well as the many parameters of the optimization.

Chapter 4 points out the specifics of an implementation on a mobile device using the Apple iOS
SDK. There we also present our new user interface for simultaneous painting and retargeting
based on fixpoint stabilization at the painting finger’s position.

In Chapter 5, we test our solution on the RETARGETME benchmark. We discuss the quality
of the cropping extension and discuss possible directions for future work. We also apply our
algorithm to a photo gallery, where retargeting is used to fit pictures with various aspect ratios
into a regular grid layout.
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1. Introduction
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2
Related Work

In this Chapter, we review existing content-aware image retargeting pipelines. All methods
decouple the problem into two steps. First, we extract some saliency map from the image.
The saliency map defines which features of the original image should be preserved and can be
defined on a pixel- or region-level. Using this importance measure, the retargeting operator
then tries to find an optimal way to generate a retargeted image. These two steps are usually
independent. So any approach for salient region detection can be combined with any retargeting
operator.

First, we focus on the retargeting process by specifying the problem we want to solve and the
objectives we aim at. Then, we compare several discrete and continuous approaches and discuss
their suitability for mobile applications.

In Section 2.2, we summarize previous work on salient region detection and argue why manual
saliency drawing is important for high-quality image retargeting.

In Section 2.3, we give a short introduction to quadratic programming problems, which is the
type of convex optimization we will use for the retargeting operator proposed in this thesis.

2.1. Retargeting

2.1.1. Problem Statement

We look at a digital image I as a sampled representation of some continuous 2D function. If I is
of widthW and heightH , then I is a set of point samples at the vertex positions of a rectangular
regular grid of W columns and H rows. Each such point sample, called pixel, is a discretized

5



2. Related Work

representation of the sampled color. With I(x, y) we denote the sample in row x and column
y of the grid. Usually a byte of information for each of the three color channels (red, blue and
green) is stored.

The retargeting task consists in generating a new image I ′ of width W ′ and height H ′ that is
perceptually as similar as possible to I . Usually, W ′ < W and/or H ′ < H . But some methods
also support image enlarging, where W ′ > W or H ′ > H . Moreover, certain operators mainly
take the aspect ratio of the retargeted image into account, i.e. W ′/H ′, and handle different
resolutions of the same ratio just by down- respectively upsampling.

Since human visual perception is based on many different factors like symmetry, recognition of
known objects or textures and noise, it is difficult to give an unambiguous quality measure for
I ′.

According to [Shamir and Sorkine 2009], I ′ should satisfy three main objectives:

• The important content of I should be preserved in I ′.

• The important structure of I should be preserved in I ′.

• I ′ should be free of visual artifacts.

The definition of important features of I is based on a saliency measure S : I → [0, 1] and
possible further constraints.

2.1.2. General classification of retargeting operators

The simplest retargeting operator is cropping where I ′ is a rectangular region of I of size W ′×
H ′. This can be done manually, semiautomatically [Santella et al. 2006] or fully automatically
[Fan et al. 2003] using a saliency measure S. Of course, this only provides satisfying results if
all of the important content is already localized in such a subwindow.

Extension of an image to the case of W ′ > W or H ′ > H can be seen as the “inverse” of
cropping. This is often called letterboxing since the original image is clamped between black
stripes on two or even four sides. This is a very inefficient use of the available screen space,
however, it perfectly satisfies all three objectives in [Shamir and Sorkine 2009]. Therefore,
letterboxing is widely used, for example in the default image viewers and video players of iOS
and Android and almost every TV-set.

An alternative approach is uniform homogeneous scaling, which corresponds to this mapping:

I ′(x, y) = I(bx · H
H ′
c, by · W

W ′ c)

This mapping might lead to aliasing artifacts as some pixels of the original image are either
ignored or repeated. Using continuous interpolation, these artifacts are removed. However,
homogeneous scaling does not preserve important structure as the whole image is shrunk or
stretched.

More sophisticated operators are usually classified into discrete approaches, which operate on
pixels, and continuous warping methods, which consider the image as a continuous function.

6



2.1. Retargeting

2.1.3. Discrete Approaches

Seam Carving

Without loss of generality, we assume that the task is to find I ′ with H ′ = H and W ′ < W with
n = W −W ′, meaning that we only want to decrease the width of the original image.

In general, discrete retargeting operators try to repeatedly remove pixels starting with the least
salient ones. Without additional constraints, deleting single pixels would destroy the rectangular
shape of the image. Removing exactly n pixels per row or the n least salient columns would
give the desired size but also introduces visible discontinuities.

Seam carving by [Avidan and Shamir 2007] (SC) repeatedly removes the least salient seam of
the image, where a seam is defined as a vertical 8-connected path that contains exactly one
pixel per row. A dynamic programming algorithm allows finding such an optimal seam in time
O(W ·H). The complexity to remove n seams is in O(W ·H · n).

In many cases, SC generates very appealing results. However, discontinuities can still appear
since chains of pixels are removed.

By calculating the order of seam removals and storing them in a so called multi-size image, I ′

can be quickly updated for varying W ′. This only holds if the saliency map S is fixed; any
change to S requires a full recomputation of the seam removal order. A faster way to find the
n seams to remove is presented in [Huang et al. 2009] where a specialized minimum bipartite
matching solver is used to find a good approximation to the n optimal seams. The computational
effort is greatly reduced, but it is still too expensive for real-time, high resolution retargeting on
mobile applications.

Seam carving can be extended for image enlarging or object removal and can also be used to
retarget videos [Rubinstein et al. 2008].

Multi-operator Retargeting

In [Rubinstein et al. 2009], a method for combining scaling, cropping and seam carving is pre-
sented. An optimal way to combine these operators is found out of exponentially many possibil-
ities using an additional dynamic programming approach. With optimization times of several
minutes, this method is not appropriate for mobile use, but the achieved quality was ranked
significantly higher than pure seam carving and among the best operators in the user study of
[Rubinstein et al. 2010].

2.1.4. Continuous Warping Methods

Warping methods look for a continuous mapping F from the initial rectangle R of size W ×H
to the target rectangle R′ of size W ′ ×H ′. By abstracting from the discretized input image, we
can create operators that express new pixel values as a superposition of pixels in the original
image. The mapping is discretized using piecewise-elements to make the computation feasible.
The final image I ′ is then computed by applying the map F to I .

7
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F
R0

(0, 0) (0, W 0)

(H 0, W 0)(H 0, 0)

R

(0, 0) (0, W )

(H, 0) (H, W )

Figure 2.1.: Illustration of the mapping from grid G to grid G′.

We define the following formal setup following the notation given in [Shamir and Sorkine 2009],
which is based on [Wang et al. 2008] and [Krähenbühl et al. 2009]:

The mapping F : R2 → R2 with F (x, y) = (Fx(x, y), Fy(x, y)) should transform R into R′

and therefore satisfy

Fx(0, ·) = 0, Fx(H, ·) = H ′, Fy(·, 0) = 0, Fy(·,W ) = W ′,

which is visualized in Figure 2.1. Optimally F is a warp that keeps every part of the original
image unchanged, which we can express locally by constraining that the Jacobian JF (x, y)
should be the identity

∀(x, y) ∈ R : JF (x, y) =

(
∂F

∂x

∂F

∂y

)
=

 ∂Fx/∂x ∂Fx/∂y

∂Fy/∂x ∂Fy/∂y

 !
=

 1 0

0 1

 = I2.

But of course, for R 6= R′, this is impossible. The different warping operators use variational
methods to find a map F whose Jacobian is close to I2 on salient parts.

Energy formulation

All continuous methods use an energy formulation that defines which distortion measure the
mapping should minimize. In [Shamir and Sorkine 2009], the following objective functional is
minimized

E(F ) =

∫ H

x=0

∫ W

y=0

S(x, y)‖JF (x, y)− I2‖2dxdy,

where ‖·‖ is the Frobenius matrix norm and S is the saliency measure. This way, the distortion
of each image part contributes to the energy proportional to its saliency. Then the optimal F is
defined as

F = argmin
F

E(F ) such that F satisfies the boundary constraints.

8



2.1. Retargeting

The method proposed by [Gal et al. 2006] uses the following energy term to express that salient
parts should be scaled by some fixed factor s and background parts should be uniformly scaled:

E(F ) =

∫ H

x=0

∫ W

y=0

S(x, y)‖JF (x, y)− sI2‖2 + (1− S(x, y))‖JF (x, y)− A‖2dxdy,

where s = min(H ′/H,W ′/W ) and A is the homogeneous scaling matrix

A =

 H ′/H 0

0 W ′/W

 .

[Wolf et al. 2007] present a method that allows flexible scaling along the retargeted dimension
and encourages the mapping to stay smooth along the unchanged dimension. For horizontal
retargeting, this results in the formulation

E(F ) =

∫ H

x=0

∫ W

y=0

S(x, y)

(
∂Fx

∂x
(x, y)− 1

)2

+ w

(
∂Fy

∂x
(x, y)

)2

dxdy,

for some weighting factor w.

These approaches allow fast numerical solutions due to the linear least-squares energy formula-
tion that can be efficiently minimized with linear sparse solvers. On the other hand, the resulting
mapping is not guaranteed to be injective, meaning that some of the piece-wise linear elements
can intersect. They are called fold overs, and they are problematic, since multiple points of I
are mappend into the same region of I ′.

This scaling approach has been extended to the scale-and-stretch operator by [Wang et al. 2008]
where the scaling factor s is allowed to locally vary. To find this field of scaling factors s(x, y),
they alternatively optimize the mapping F and the factors s until convergence. The flexibility
allowed by this local scaling factors enables local rotations and contortions. They added a grid
line bending energy to control such distortions and to limit fold overs.

The algorithm of [Krähenbühl et al. 2009] went back to using a single global scale factor to pre-
vent proportionality artifacts. They introduced two new energy components to prevent bending
and blurring of edges. As this work focused on streaming video retargeting, they also ensured
temporal coherence of the warp. To allow precise manual control of the deformation, they
further introduced more sophisticated constraints. The user can specify lines that should be
preserved and mark objects that should keep their relative position in the warped image.

These advanced methods require more expensive optimization techniques. In [Wang et al. 2008],
the mapping is iteratively refined by alternately optimizing the mapping and updating the scaling
and grid line bending factors. [Krähenbühl et al. 2009] use a GPU-optimized multigrid solver
to incorporate all constraints.

A general framework for energy-based image deformations is presented in [Karni et al. 2009].
They introduce an alternating local-global-optimization. Incorporating the saliency information
only in the local optimization step allows this method to avoid fold overs.

9
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v0i,j+1

v0i+1,j

v0i,j
vi,j vi,j+1

vi+1,j

G G0

Fp p0

Figure 2.2.: Illustration of the discretized mapping from grid G to grid G′,

Discretization and Finite Differences

Once the energy term is defined, all methods discretize the mapping using a regular grid. We
call G the original uniform grid on R that gets mapped to a grid G′ on R′, that is the retargeted
grid that represents F (G). Let us denote the number of rows and columns of these grids by N
and M and by vi,j and v′i,j the vertices of G respectively G′, where 0 ≤ i ≤M , 0 ≤ j ≤ N .

Inside each grid cell we use bilinear interpolation to locally linearize the mapping. A point in
the cell at row i− 1 and column j− 1 of grid G is described in terms of the positions of the cell
corners as

p = (1− s) · (1− t) · vi,j + s · (1− t) · vi+1,j + (1− s) · t · vi,j+1 + s · t · vi+1,j+1.

for some s, t ∈ [0, 1] and will be mapped to p′ in G′ using the transformed cell corner positions

p′ = (1− s) · (1− t) · v′i,j + s · (1− t) · v′i+1,j + (1− s) · t · v′i,j+1 + s · t · v′i+1,j+1.

This discretization allows us to express the derivatives as finite differences:

∂F

∂x
=

v′i+1,j − v′i,j
‖vi+1,j − vi,j‖

and
∂F

∂y
=

v′i,j+1 − v′i,j
‖vi,j+1 − vi,j‖

.

Figure 2.2 illustrates the discretized mapping. By choosing the resolution of the discretization,
a tradeoff between the approximation quality to the continuous warp and the computational
complexity can be made. [Wang et al. 2008] stated that a quad grid of 20 × 20 cells produced
sufficiently good results in all experiments. Such resolutions can be far below the dimensions
of both I and I ′, but they can still capture the optimal deformations reasonably well since
neighboring regions should be deformed similarly to avoid visual artifacts.

However, [Krähenbühl et al. 2009] note that the coarse grid resolution considerably restricts
the warp, making it difficult to preserve small scale features. They propose using a regularized
pixel-accurate warping, which can run at interactive rates only using a customized GPU-based
multigrid solver.

Bijectivity

None of these methods can guarantee the absence of fold overs. Only recently, [Chen et al. 2010]
introduced inequality constraints to formally guarantee non-negativity of each grid cell. They
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2.1. Retargeting

v0i,j+1

v0i+1,j

v0i,j
vi,j vi,j+1

vi+1,j

G G0

F

W

N

H

M

scols
j+1

srows
i+1

Figure 2.3.: Illustration of the axis aligned deformation space.

derive a convex quadratic programming problem, which is more expensive to solve than all the
previously presented energies. Using the CVX MATLAB toolbox by [Grant et al. 2008], they
report optimization times between 2 to 12 seconds on a grid of 10 to 32 cells in both dimensions.

Looking at previous retargeting methods and noticing that all of them hardly introduce local
rotations, [Panozzo et al. 2012] proposed choosing the space of axis-aligned deformations as
the meaningful space for content-aware image retargeting. This has the advantage of allowing
a one-dimensional parametrization of the deformation, thus reducing the number of variables
from M · · ·N to M +N . All the vertices in the same row of the grid stay on the same line and
have equally distant horizontal neighbors across all rows. This means that the grid G′ satisfies
the equalities

∀i ∈ {1, . . . ,M} ∀j ∈ {0, . . . , N}: srows
i = v′i,j − v′i−1,j and

∀j ∈ {1, . . . , N} ∀i ∈ {0, . . . ,W}: scols
j = v′i,j − v′i,j−1,

where srows
i and scols

j for 1 ≤ i ≤ M and 1 ≤ j ≤ N completely describe G′. The axis-aligned
deformation space is illustrated in Figure 2.3.

They use an As-Similar-As-Possible (ASAP) energy formulation extended with a Laplacian
regularization. They impose inequality constraints to enforce a minimum cell size that prevents
discontinuities and consequently also fold overs. As other grid-based approaches before, they
argue that coarse grids of 25× 25 cells suffice in most cases, even for multi-megapixel images.
So with as few as 50 optimization variables, the convex optimization can be performed in 4ms
(250 fps) on a recent single desktop CPU. This allows real-time frame rates for interactive
saliency drawing and makes this method suitable for our mobile applications.

To increase the smoothness of the final warp, they propose using 1D cubic B-spline upsampling
of the grid along both dimensions. From this refined grid, the final retargeted image I ′ gets
sampled using bilinear interpolation.

The limitations of this method can be seen in situations where extreme shearing whould better
preserve salient parts. While the method of [Krähenbühl et al. 2009] allows such deformations,
it requires a fast GPU to reach interactive rates. Also, non-axis-aligned straight lines are not
preserved by this method.
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2.1.5. Comparison

As the perceived quality of a retargeted image depends on many different factors, giving ob-
jective quality measures measures is very hard. The perceived quality is very subjective. For
instance, this could get as personal as whether the viewer knows the people in the image and
therefore could tell if their faces are even slightly deformed.

[Rubinstein et al. 2010] performed the first large-scale comparative user study. They compiled
a dataset of 37 images in a benchmark called RetargetMe. After applying eight different op-
erators to each of these images, they asked several hundred users to compare these images
pairwise in an web-based survey. Streaming video (SV) [Krähenbühl et al. 2009], multi opera-
tor retargeting (MULTIOP) [Rubinstein et al. 2009] and manual cropping (CR) were preferred
over the other approaches (seam carving (SC) [Avidan and Shamir 2007] and scale-and-stretch
(SNS) [Wang et al. 2008]). It is interesting to note that all types of operators appear in the top
three. Therefore, there seems to be no generally preferable approach among the discrete and
continuous warping methods, and manual selection of an optimal subwindow can keep up with
the more sophisticated approaches. According to the authors of the study, “this suggests that
loss of content is generally preferred over deformation artifacts. The search for optimal crop-
ping windows [...] is still very much a valid and relevant research venue.” They also underline
that several automatic similarity metrics did not correspond to their comparative results. This
confirms the complexity of defining retargeting quality in an objective way.

[Castillo et al. 2011] used eye-tracking to assess the quality of image retargeting operators on
the RetargetMe benchmark. They especially compared the sets of fixation points before and
after the retargeting to see whether artifacts caught the eyes of the viewers.

The study has been repeated in [Panozzo et al. 2012] together with the introduction of the axis-
aligned retargeting operator. The quality of the axis-aligned operator (AA) was ranked indis-
tinguishable from the three previous best methods SV, MULTIOP and CR. Therefore, this new
approach provides state-of-the-art retargeting quality while also being considerably faster then
other methods.

We refer to [Shamir and Sorkine 2009] and [Shamir et al. 2012] for an in-depth treatment of
existing retargeting approaches.

2.2. Saliency Evaluation

The extraction of a saliency map is the first step in every retargeting pipeline. As with retar-
geting operators, the quality of a saliency detector is not trivial to measure. It depends on the
observer and the context as well as on the specific application. To understand the human visual
perception, many fields, ranging from neurosciences, biology, machine learning to computer
vision, need to be considered. In general, a classification into low-level stimuli-driven and high-
level object-detection types of saliency inference methods can be made. This classification goes
back to the feature-integration theory of [Treisman and Gelade 1980]. They model human per-
ception so that bottom-up features “are registered early, automatically, and in parallel across
the visual field, while objects are identified separately and only at a later stage, which requires
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focused attention.” (page 98 of [Treisman and Gelade 1980])

2.2.1. Low-Level Salient Region Detection

According to [Cheng et al. 2011], “saliency originates from visual uniqueness, unpredictability,
rarity, or surprise, and is often attributed to variations in image attributes like color, gradient,
edges and boundaries.” This indicates that filtering methods, like edge detection, can already
be a reasonable approximation to the human visual perception. The seam carving operator by
[Avidan and Shamir 2007] takes the L1-norm of the image gradient as saliency measure

S(I) =

∣∣∣∣∂d∂xI
∣∣∣∣+

∣∣∣∣∂d∂yI
∣∣∣∣ ,

while others like [Wang et al. 2008] use the Euclidean L2-norm

S(I) =

√(
∂d

∂x
I

)
+

(
∂d

∂y
I

)
.

Other ways to detect locally significant parts are the edge-detector by [Canny 1986] or the
corner-detector by [Harris and Stephens 1988].

In the user study conducted by [Einhäuser and König 2003], they asked the participants to care-
fully study some images while an eye tracker was recording fixation points. They found a cor-
relation between the fixation points and regions of high luminance-contrast. Therefore many
salient region detection algorithms try to find globally unique regions of high contrast. As ex-
haustively comparing each pair of image pixels is very expensive, [Cheng et al. 2011] propose
a histogram-based contrast method with some additional smoothing to minimize quantization
artifacts. They also propose segmenting the image first into regions of small contrast to further
minimize the computational effort. Recently, [Perazzi et al. 2012] introduced a method called
Saliency Filters. They first cluster all pixels of the image into elements of similar color and then
apply high-dimensional Gaussian filtering to measure the uniqueness and the spatial distribution
of each element. To get the saliency of every pixel, they combine the uniqueness and spatial
distribution of nearby elements using Gaussian weights. This way, they get a pixel-accurate
saliency map, which can also compensate segmentation inaccuracies. As all these steps can be
formulated as decomposable Gaussian blurrings, they derive an efficient implementation and
at the same time produce saliency maps that are closer to the ground truth than any previous
contrast-based method.

2.2.2. High-Level Object Detection

By using eye-tracking data, [Judd et al. 2009] learned that humans focus on common objects
when asked to freely look at pictures. Text, people and specifically faces catch the viewer’s
attention quickly. In the absence of such objects, humans focus on the center of the image
and look for salient low-level features. So recognizing each of these objects, like text or faces,
can help to compute saliency maps. [Viola and Jones 2004] proposed a robust real-time face
detection method and methods for text detection are also well-known.
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To allow maximal flexibility, manual saliency drawing should be considered as well. Especially
for the application in image retargeting, this is still important. In images where there are no
objectively less important parts, manual saliency drawing can provide an intuitive way for an
artist to control the deformation on a fine-grained level and to express personal preference.

2.3. Convex Optimization

[Chen et al. 2010] and [Panozzo et al. 2012] fomulate the generation of a retargeted image as a
quadratic optimization program. In this Section, we give a short introduction to convex opti-
mization problems and numerical solvers for such problems.

2.3.1. Problem Formalization

Following the notation of [Boyd and Vandenberghe 2004], we specify a mathematical optimiza-
tion problem as follows

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m.

We call x = (x1, . . . , xn) the optimization variable, f0 : Rn → R the objective function, the
functions fi : Rn → R, i = 1, . . . ,m are the constraints functions and the constants b1, . . . , bm
are the bounds for the constraints. A vector x? is called optimal if it has the smallest objective
value among all vectors satisfying the constraints. We call the set of vectors that satisfy the
constraints the feasible region of the problem.

An optimization problem is quadratic if its objective function can be written in the form

f0(x) = xTQx+ xT b,

where Q is a symmetric matrix in Rn×n and b ∈ Rn.

The optimization problem is convex if

fi(αx+ βy) ≤ αfi(x) + βfi(y) ∀x, y ∈ Rn and ∀α, β ∈ R
with α + β = 1 and α, β ≥ 0,∀i ∈ {0, 1, . . . ,m}.

In the case of a quadratic problem, this means that Q needs to be positive semidefinite. If f0
is bounded from below on the feasible region and the feasible region is non-empty, a global
minimizer exists. If additionally Q is positive definite, i.e. xTQx > 0 ∀x 6= 0, the minimizer is
unique.

2.3.2. Interior Point Method

One algorithm to solve such convex quadratic optimization problems is the interior point method.
According to [Dantzig and Thapa 2003], this method was invented by John van Neumann. The
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main idea is to incorporate the convex constraints into the objective function. So whenever any
condition is violated, a near-infinity penality should be added and whenever all conditions are
satisfied, nearly no change to f0 should be made. This is achieved using so called logarithmic
barrier functions that smoothly approximate the discontinuous constraint indicator function.
The work of [Karmarkar 1984] shows that it is possible to approximate the solution efficiently,
meaning that the number of iterations needed is polynomial in the dimension n and the desired
accuracy of the approximation.

CVXGEN

[Mattingley and Boyd 2012a] presented a code generator that can generate a solver for any con-
vex quadratic optimization problem of modest size. The solver uses the interior point method
and the generated C-code is library-free and highly optimized, making it suitable for embedded
real-time applications. The problem statement is formulated in a high level description lan-
guage, which allows the generator to analyze the sparsity patterns of the matrices involved and
optimize the generated code accordingly. We used CVXGEN to generate the solver for our iOS
application.

MATLAB Optimization Toolbox

The optimization toolbox in MATLAB also includes a solver for quadratic programs, called
quadprog, where the interior point method can be chosen by setting the corresponding algo-
rithm option. We used this solver only for testing purposes.
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3
Algorithm

In this Chapter, we present our retargeting algorithm. The method minimizes the As-Similar-
As-Possible energy on an axis-aligned grid, similarly to [Panozzo et al. 2012], by combining a
bijective deformation and cropping. We also show how to regularize the result with a Laplacian
term and how to apply it to high-resolution images using cubic B-spline upsampling.

We first introduce the retargeting operator without cropping in Section 3.1 and then we add
cropping in Section 3.2.

In Section 3.2.1, we discuss possible other approaches and why they are not suitable for our
specific scenario. Our cropping operator is simple, yet effective and allows an efficient imple-
mentation.

Finally, we summarize in Section 3.3 the automatic saliency detection methods we imple-
mented. We use the magnitude of the gradient and a face detector to get a rough saliency
map. Our main focus however lies on an intuitive interface for manual saliency painting, which
will be discussed later in Section 4.2.

3.1. Retargeting Operator

We want to warp an input image I of width W and height H to a new image I ′ of width W ′ and
height H ′. To describe the warp, we lay a grid G of N columns and M rows over the image I
and search for an optimal grid G′ of the same number of rows and columns but over I ′. We will
use M = N in our implementation, as M 6= N is a reasonable choice only if we a priori know
something about the aspect ratio of I or I ′. The grid G is uniform, meaning that each column
has width W/N and each row has height H/M . The retargeted grid G′ will have the desired
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size of W ′×H ′ and will be non-uniformly deformed to preserve salient content. We denote by
rs and rt the aspect ratios in the source image I and the target image I ′, so

rs =
W

H
and rt =

W ′

H ′
.

We restrict the set of admissible grids G′ to axis-aligned deformations, such that we can fully
describe the grid by stating the height of each row and the width of each column. Therefore, the
following M + N variables are sufficient to describe the position and extent of all the M · N
grid cells:

srows = (srows
1 , srows

2 , . . . , srows
M )

scols = (scols
1 , scols

2 , . . . , scols
N )

We denote by s = (srows, scols)T ∈ RM+N the vector of the unknown heights and widths.

3.1.1. Quadratic Convex Optimization Problem

Our energy formulation will lead to a quadratic convex optimization problem (QP) of this form:

minimize sTQs (3.1)

subject to srows
i ≥ H̄min

i , i = 1, . . . ,M, (3.2)
srows
i ≤ H̄max

i , i = 1, . . . ,M, (3.3)

scols
j ≥ W̄min

j , j = 1, . . . , N, (3.4)

scols
j ≤ W̄max

j , j = 1, . . . , N, (3.5)

srow
1 + srow

2 + · · ·+ srow
M = H ′, (3.6)

scols
1 + scols

2 + · · ·+ scols
N = W ′. (3.7)

The matrix Q ∈ R(M+N)×(M+N) will describe the saliency-based energy. We will use the
bounds H̄min

i , H̄max
i , W̄min

j and W̄max
j to restrict the size of each row and column. By choosing

H̄min
i > 0 and W̄min

j > 0 for all non-cropped rows and columns, the inequalities (3.2) and (3.4)
guarantee that G′ will not contain fold overs. The cell (i, j) will be of size at least W̄min

j × H̄min
i .

As we use bilinear interpolation inside each cell, no part of I ′ will degenerate and discontinuities
are impossible. The equality constraints (3.6) and (3.7) fix the target size W ′ ×H ′.
Compared to the formulation in [Panozzo et al. 2012], we simplified the objective function by
omitting the additive term sT b. In our energy formulation, b would be the zero vector regardless
of all parameters. We added more detailed boundary constraints as we want to control the size
of each row or column individually. We can also bound them from above, which we will need
when we decide to crop some of them.

3.1.2. Energy Formulation

We base the energy formulation on the pixel-accurate saliency map S : I → [0, 1]. This map
measures how important each image location is. It tells us if we should try not to deform the

18



3.1. Retargeting Operator

I S ⌦

(b)(a) (c)

Figure 3.1.: (a) The original photo I . (b) Manually painted saliency map S on I . (c) The energy formu-
lation only considers the rasterized saliency matrix Ω.

region around around the pixel or if we are free to stretch it as we please. Figure 3.1 (b) shows
such a saliency map. The discretized energy only considers the integrated values over each grid
cell and therefore, we can reduce the relevant saliency values to the saliency matrix Ω ∈ RM×N

(Figure 3.1 (a)). In our piecewise-linear deformation, these matrix entries are simply the cell
averages:

Ωi,j =
M ·N
W ·H

bi·H/Mc∑
x=b(i−1)·H/Mc

bj·W/Nc∑
y=b(j−1)·W/Nc

S(x, y)

ASAP Energy

We want to preserve salient regions of the image by only scaling them uniformly and avoid-
ing every other transformations. In other words, we want the warp to locally correspond to
a similarity transform. A salient part can then be translated, proportionally scaled, mirrored
or rotated. Note that our deformation space does not allow the latter two. In our setting, the
As-Similar-As-Possible energy measures only non-uniform scaling:

EASAP =
M∑
i=1

N∑
j=1

(
Ωi,j

(
M

H
srows
i − N

W
scols
j

))2

.

The two factors M/H and N/W take the aspect ratio of the cells in the original grid G into
account. They are needed since in general the cells will not be square. To convert the energy
in the QP form of Equation 3.1, we rewrite the summation as an inner product of a matrix
K ∈ R(MN)×(M+N):

Kk,l =


Ωr(k),c(k)

M
H

if l = r(k),

−Ωr(k),c(k)
N
W

if l = M + c(k),

0 otherwise,

for the row r(k) = dk/Ne and column c(k) = ((k − 1) mod N) + 1. With increasing k, we
go through Ω row after row and set (at most) two non-zero entries in each row of K. Each entry
in Ks is then the square root of some summand of EASAP. Therefore EASAP = (Ks)T (Ks) =
sTKTKs.
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Laplacian
regularization

G G ′

Figure 3.2.: The Laplacian regularization minimizes differences in width and height of neighboring
columns and rows.

Regularization

To control the smoothness of the resulting deformation, we add a Laplacian regularization term.
This will ensure that neighboring rows or columns have a similar height resp. width. We again
use a sum of squared differences:

Ereg =
M�1�
i=1

�
M

H
(srows

i+1 � srows
i )

�2

+
N�1�
j=1

�
N

W
(scols

j+1 � scols
j )

�2

,

which we can write in matrix form (Ls)T (Ls) = sTLTLs for a matrix L � R(M+N)× (M+N)

with

Lk, l =

���������
�M

H
k = l and 1�k, l �M,

M
H

k = l � 1 and 1�k, l�M,

�N
W

k = l +M and 1�k �M, l�N,
N
W

k = l � 1 +M and 1�k �M, l�N.

Since manually painted saliency maps often include sharp edges, the ASAP minimum could
contain abrupt changes. The Laplacian regularization helps to distribute the deformation more
evenly across the image. This is illustrated in Figure 3.2. The Laplacian is minimized by
homogeneous scaling. Therefore we can think of the regularization term as a way to blend
between the ASAP deformation and homogeneous scaling. To do this we introduce a weighting
factor wreg, which completes our energy formulation:

E = (1� wreg)EASAP + wregEreg (3.8)

= (1� wreg)(s
TKTKs) + wregs

TLTLs (3.9)

= sT
�
(1� wreg)(K

TK) + wregL
TL
�� �� )

=: Q

s. (3.10)
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(b)(a) (c)

G
G ′ G ′

Figure 3.3.: Minimum cell size constraints. (a) The image in its original aspect ratio. (b) The uniform
minimum cell size as used in [Panozzo et al. 2012]. (c) The aspect-ratio-aware minimum
cell size we propose. The two smaller boxes represent the L-downscaled minimum cell
sizes for L = 0.5.

3.1.3. Boundary Constraints

As long as we do not crop parts of the image, we use homogeneous boundary constraints as in
[Panozzo et al. 2012], which means that we choose some H̄min and W̄min such that

�i � { 1, ...,M } : H̄min
i = H̄min,

H̄max
i = H�,

�j � { 1, ...,N } : W̄min
j = W̄min,

W̄max
j = H�.

Now we can set H̄min and W̄min to define the minimal size of each cell. This gives strict control
over the flexibility of the warp and ensures the absence of fold overs and discontinuities. While
H̄min = H�/M and W̄min = W�/N would force homogenous scaling, setting H̄min = 0 and
W̄min = 0 would allow cells to be cropped and could introduce degenerated cells and thus
discontinuities. So we want to go for something in between.

[Panozzo et al. 2012] choose a minimum cell size, which we will call uniform minimum cell
size. It is defined as

H̄min = L · H�/M and W̄min = L · W�/N for some L � (0, 1),

where we call L the minimum cell size scaling factor.

This forces each cell to respect a minimum cell size, which is in the aspect ratioW�/H�· M/N of
the retargeted image I�. This bound has no explicit meaning as each cell originates from a part of
the original image. In the original image the cell was in a different aspect ratioW/H · M/N . The
uniform minimum cell size forces the warp to respect a minimum image size that corresponds
to a uniform homogeneous scaling to the target ratio. This is illustrated in Figure 3.3 (b).

For different source and target ratios and a large L this can force the warp to unnecessarily
stretch salient parts of the image. Furthermore this uniform minimum cell size would be prob-
lematic in our cropping approach, as we will see later in Section 3.2.2. We propose a different
minimum cell size, which we call aspect-ratio-aware. We first proportionally scale G to fit into
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(b)(a) (c)

Figure 3.4.: Comparison between the two types of cell size constraints using L = 0.9. (a) The image in
its original aspect ratio. (b) The uniform minimum cell size as used in [Panozzo et al. 2012].
(c) The aspect-ratio-aware minimum cell size we propose. Both images use the same
saliency map as in Figure 3.1.

G′ and only then apply some scaling factor L. This way the minimum cell size keeps its original
aspect ratio, as illustrated in Figure 3.3 (c).

To explicitly calculate the size of this aspect-ratio-aware minimum cell, we condition on the
side of I ′ that is smaller compared to I and then apply proportional scaling to fit into G′. This
formula is given in Algorithm 1.

Algorithm 1 Determine the minimum cell size
if rt > rs then . The height of I ′ is the limiting factor.

H̄min ← H′

M
· L

W̄min ← sr · H
′

N
· L . W̄min = (sr

M
N

) · H′

M
· L = sr · H

′

N
· L and still W̄min ≤ W ′/N .

else
W̄min ← W ′

N
· L

H̄min ← 1
sr
· W ′

M
· L . H̄min = 1

sr(M/N)
· W ′

N
· L = 1

sr
· N
M
· W ′

N
· L = 1

sr
· W ′

M

end if

The difference between these two constraints becomes apparent for L-values close to one. As
[Panozzo et al. 2012] usedL = 0.2 for their benchmark and as default value, the choice between
the two constraints does not change much. We will use bigger L-values later on, where the two
bounds can clearly be distinguished. Figure 3.4 compares the two bounds for L = 0.9 and
visualizes the distortion caused by the uniform minimum cell size that we prevent with our new
approach.

Existence of a Feasible Solution

In order for the quadratic program (QP) to be convex, Q needs to be positive semi-definite. As
this is the case for both the ASAP-matrix KTK and the Laplacian L, their weighted sum Q is
also positive semi-definite. The feasible region is non-empty as long as all W̄min

j ≤ W ′/M and
H̄min

i ≤ H ′/M and for at least one W̄max
j = W ′ and one H̄max

i = H ′. With the homogeneous
boundary conditions above, homogeneous scaling is a feasible solution. In the cropping case
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(b)(a)

Figure 3.5.: (a) Retargeted image using bilinear interpolaton on a 25× 25 grid. One can clearly see the
irregularities at the border of the lawn. (b) Resulting image after spline upsampling from a
25× 25 grid to a grid of 75× 75 cells.

below, homogeneous scaling in the non-cropped rows and columns will also be feasible. There-
fore, a minimal solution exists as the objective function is bounded on the feasible domain.

3.1.4. Spline Interpolation

[Panozzo et al. 2012] noted that a coarse resolution of the grid, like N = M = 25, is enough
to approximate the continuous warp very well in most cases. But, as the bilinear interpolation
is not smooth across the grid cell borders, we can sometimes see smoothness artifacts in high
resolution images, like the ones in Figure 3.5 (a).

To remove these artifacts, we use B-spline interpolation to upsample the retargeted grid. We
can separately interpolate the rows and columns in one dimension each, using cubic B-spline
interpolation. We start by calculating the cumulative sums of the row heights srows and column
widths scols:

prows
i =

i∑
k=1

srows
k , i = 0, . . . ,M and pcols

j =

j∑
k=1

srows
k , j = 0, . . . , N.

Without loss of generality, we now show how to interpolate the row border positions p :=
prows = (prows

0 , prows
1 , . . . , prows

M ). Between two such grid points pi and pi+1, we use the interpo-
lation parameter t ∈ [0, 1] for the interpolation function p̃ and equally weigh each of the four
nearest points. This is called piece-wise uniform cubic B-spline interpolation and corresponds
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0 1 M � 1 M M + 1�1

H

Legend

original grid point

extrapolation point

sampling point

pMpM�1

pM+1

p1

p0

p�1

spline p̃

Figure 3.6.: Uniform cubic B-spline upsampling in one dimension to get a refined grid of resolution 2M .

to

p̃(t) =
(
t3 t2 t2 t

)

−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0




p′i−1

pi

pi+1

p′i+2

 . (3.11)

We have to carefully handle the two corner cases, where we will just linearly extrapolate p in
order not to introduce any new discontinuities:

p′i−1 =

{
pi−1 if i− 1 ≥ 0

p0 − (p1 − p0) = 2p0 − p1 otherwise, so if i− 1 = −1

p′i+2 =

{
pi+2 if i+ 2 ≤M

pM + (pM − pM−1) = 2pM − pM−1 otherwise, so if i+ 2 = M + 1

Figure 3.6 illustrates the uniform cubic B-spline interpolation. To refine our retargeted grid, we
sample the spline p̃ for denser positions and obtain a new grid of arbitrary resolution. As cubic
B-splines fulfill the variation diminishing property, the upsampled grid will also be foldover-
free. The quality improvement can be clearly seen in Figure 3.5 (b).

3.2. Cropping

In situations where the image is either full of salient content or some regions along the border
do not contain any salient parts, additional cropping might be preferable to plain non-uniform
warping. In this Section, we present our cropping extension to the axis-aligned image retarget-
ing operator. We also discuss other approaches that we considered and their shortcomings.
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(b)(a)

Figure 3.7.: If we set the lower bound column width to zero, then also columns can be removed that
are not at the border. This introduces highly visible artifacts. (a) The image in its original
aspect ratio with the painted saliency map. (b) The retargeted image where the optimization
removed several columns in the middle completely.

3.2.1. General Approaches

Integrate Cropping into the Energy Term

We use a variational method to retarget the image in Section 3.1, so the most natural approach
would be to incorporate cropping directly into the energy term. We could add N + M binary
variables c1, . . . , cN+M , one for each row and column of the grid to indicate which parts of
the image will be cropped. But this would chain the variables together, as we would have
conditions of the form “only allow si = 0 if already si−1 = 0”, which we can not express in our
optimization framework. Note that simply removing the lower bounds of the cell sizes does not
help here since this would allow the removal of every row or column, independent of whether
it is adjacent to the border or not. Removing a row that is not on the border will introduce a
discontinuity as shown in Figure 3.7 (b).

It is thus non-trivial to directly include the cropping into our energy term while keeping the
structure of the constraints fixed. This is very important in order to achieve high efficiency in
the optimization, as discussed in Section 4.1.

A Priori Cropping

Heuristics could be used to decide what to crop before minimizing the energy (Equation 3.8).
For instance, we could crop along the side we have to decrease to get an image whose aspect
ratio is closer to the target ratio. As indicated in Figure 3.8 we could crop simultaneously from
both sides as long as we do not hit any (large) salient parts. However, we might end up having
cropped more than necessary and we might only realize this after the subsequent optimization.
In general, such a priori methods lack the knowledge gained by the energy minimization when
deciding what to crop.
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(b)(a)

✂ ✂
G G0

Figure 3.8.: A priori cropping. (a) We crop until we hit a salient object. (b) We might crop more than
necessary and then need to stretch the remaining part during the energy optimization.

(b)(a)

✁ ✁

(c) (d)

Figure 3.9.: A posteriori cropping. Starting with the original image (a) we find the optimal warp (b). We
decide what to crop (c) and then scale the remaining image parts uniformly to fill the target
rectangle (d).

A Posteriori Cropping

Another possible approach would be to first run the energy minimization and then decide what
to crop based on the optimized grid. For this, we could start at each of the four borders and
decide to crop rows and columns whose heights and widths are close to the minimum sizes
H̄min [W̄min]. After that we could rescale the remaining part of the image to fill the target
rectangle R′ again. These three steps are visualized in figure 3.9.

Since only small border parts get cropped, hopefully only minimal rescaling is needed at this
point. However, we cannot give any quality guarantees and the final warp is not an energy
minimizer anymore. Therefore, what we propose is performing another energy optimization on
the part of the image that is left after cropping.

3.2.2. Threshold-Based Cropping

Our cropping operator will solve two similar quadratic programs. Let us assume that the
saliency matrix Ω, the regularization factor wreg and the minimum cell size W̄min × H̄min are
fixed. In the first minimization, we detect which rows and columns would be squeezed below
the minimum cell size if we imposed softer lower bound constraints. In other words, we want
to detect what the optimization would shrink more if it were allowed to do so. For this, we
choose a threshold factor α ∈ (0, 1) and then optimize with a downscaled minimum cell size of
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(b)(a)

✁ ✁

(c) (d)

Figure 3.10.: Our threshold-based cropping approach. Starting with the original image (a) we find the
optimal warp (b) using the minimum cell size W̄ crop × H̄crop. We decide what to crop (c)
and then optimize the remaining image parts again to fill the target rectangle (d).

W̄ crop × H̄crop := (αW̄min)× (αH̄min). We call the resulting first grid G′1.

In G′1, we now crop each row that is smaller than H̄min starting from the top and the bottom,
and by starting from the left and right border, we crop each column that is narrower than W̄min.
We denote the number of cropped rows and columns on each side by ct, cb, cl and cr. So we are
left with a grid of (M − ct − cb) rows and (N − cl − cr) columns.

For the second application of the convex solver, we now only consider the non-cropped parts
of the image. Thanks to the element-wise boundary condition in our optimization problem, we
can easily reflect our cropping decision in the constraints. We just set H̄min

i = H̄max
i = 0 for all

cropped rows and W̄min
j = W̄max

j = 0 for all cropped columns. On the non-cropped part, we use
the original boundary constraints of W̄min × H̄min and only upper bound the rows and columns
by the total width W ′ and height H ′ as in the standard operator. By solving this adopted QP, we
get a second grid G′2. Using the mapping from G to G′2, we sample the final retargeted image
I ′.

Figure 3.10 visualizes this threshold-based cropping technique and Algorithm 2 summarizes
our method. In Figure 3.11, we show how the saliency map defines the parts of the image that
can get cropped and that we can largely reduce the deformation in the unsalient part.

Boundary Constraints

With our cropping approach in mind, it becomes clear why it is important that the minimum cell
size and also its α-downscaled variant, which we use in the first optimization, are of the same
aspect ratio as the cells in G. Figure 3.12 illustrates how the salient part of an image would get
cropped if we used a minimum cell size in the ratio of the target rectangle.

3.2.3. Implementation

When implementing this cropping algorithm, we can use exactly the same N × M grid QP
solver in both optimizations. This is essential when using CVXGEN to generate an optimized
solver for a single fixed problem size. What we do need to change however, is how we construct
the Laplacian regularization matrix L and how we use spline upsampling to refine the grid. Both
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Algorithm 2 Threshold-based cropping

Input: I , W ′, H ′, Ω, wreg, W̄min × H̄min

Output: I ′
Procedure:
G′1 ← solution of optimization with minimum cell size W̄ crop × H̄crop

(srows, scols)← G′1 . Extract the size of the rows and columns from this first grid.
(ct, cb, cl, cr)← (0, 0, 0, 0)
while srows

ct+1 < H̄min do . Crop vertically.
ct ← ct + 1

end while
while srows

M−cb < H̄min do
cb ← cb + 1

end while . Not all rows will get cropped as they sum up to at least M · H̄min.
while scols

cl+1 < W̄min do . Crop horizontally.
cl ← cl + 1

end while
while scols

N−cr < W̄min do
cr ← cr + 1

end while . Not all columns will get cropped as they sum up to at least N · W̄min.
G′2 ← solution of optimization with minimum cell size W̄min × H̄min for non-cropped cells
I ′ ← sample from I using the mapping G→ G′2

(b)(a) (c)

Figure 3.11.: We can influence the cropping decision by drawing into the saliency map. This way we can
select whether only the cow (b) or also the hills in the background (c) should be kept. We
observe that the more we can crop, the less deformation in the unsalient parts is needed.
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(b)(a) (c) (d) (e) (f)

✁

Figure 3.12.: This image illustrates the problems that arise when we use the uniform minimum cell size.
(a) The original image with saliency painted on top of it. Note the salient cell marked at the
bottom of the image. (b) In the retargeted image the salient cell keeps its original aspect
ratio. (c) But if we use the uniform minimum cell size the salient cell will get cropped.
To see why this happens we take a look at the three sizes involved in the decision. The
size of the retargeted cell (d) after the first optimization, the crop size (e) and the minimum
cell size (f). Remember that the crop size is used as the minimum cell size in the first
optimization. Therefore by keeping its aspect ratio the optimized cell (d) can have a height
below the cropping threshold, which is the height of the minimum cell (f). So the row
containing (d) gets cropped even though it is salient and even though the image is resized
horizontally.
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(b)(a) (c)

Figure 3.13.: Crop awareness. (a) The original image with the saliency map on top of it. (b) Wrong crop-
unaware implementation of the Laplacian regularization. The columns near the border get
unnecessarily thinned out. The detail view shows the underlying rectangular grid. (c)
Wrong non crop-aware implementation of the cubic B-spline upsampling. Also here, the
columns near the border get thinner and even two cropped columns become very thin lines
again.

techniques must be modified to be aware of the cropping.

For the regularization matrix L for the second optimization, this means that we should consider
neighboring pairs of rows and columns only if both of them are not cropped. Otherwise this
would lead to thinning effects at the cropping border as can be seen in Figure 3.13 (b).

The same also applies to the uniform cubic B-spline upsampling, where we should only take
the non-cropped segment into account. If we wrongly interpolated along all positions, including
the cropped ones, the last cropped segements would appear as thin lines. Such artifacts can be
seen in the wrongly upsampled image in Figure 3.13 (c).

If implemented correctly, none of these artifacts appear. In Section 4.2.2, we will go into detail
on how we present the cropping decision to the user and how the user can interactively refine
the cropping decision just by painting or removing saliency.
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0 W 0W̄ avgW̄minW̄ crop

W̄ low W̄ high

��

threshold range

Figure 3.14.: All the limits involved in defining the crop-threshold range. β interpolates between W̄min

and W̄ crop and γ between W̄min and W̄ avg.

3.2.4. Crop-Treshold Range

When dynamically changing the aspect ratio rt of our retargeted image I ′, we can observe
that our cropping algorithm so far often does not crop one column after the other, step by
step. Instead, the decision to crop several columns is often made over a very small change
in aspect ratio. This makes perfect sense considering the underlying energy minimization. The
optimization tries to keep equally salient parts equally deformed, as this minimizes the quadratic
ASAP energy term. Additional regularization further encourages neighboring cells to have the
same size. This means however, that neighboring cells also reach the threshold width at roughly
the same aspect ratio and therefore will get cropped roughly at the same time.

Thus, the operator does not provide a smooth cropping experience. We relax the fixed cropping
threshold by introducing a crop-threshold range. The operator should decide to crop the first
column even if its width is still bigger than W̄min, somewhere between the average column
width and the minimum column width W̄min. But later on, we want to crop additional columns
only if they are clearly narrower than W̄min. In the end, the column would need to be as narrow
as the first optimization allows, so W̄ crop.

To formalize this, we introduce two new parameters β, γ ∈ [0, 1] to control the extent of this
threshold range and define the following limits:

the aspect-ratio-aware average cell width W̄ avg =

{
W ′

N
if rt > rs

sr
H′

M
if rt ≤ rs

,

the minimum column width W̄min = L · W̄ avg,

the downscaled W̄min we use in the first optimization W̄ crop = α · W̄min,

the lower end of the cropping-threshold range W̄ low = W̄min − β
(
W̄min − W̄ crop

)
,

the upper end of the cropping-threshold range W̄ high = W̄min + γ
(
W̄ avg − W̄min

)
.

In Figure 3.14, all these limits and the threshold range [W̄ low, W̄ high] are visualized.

When deciding whether to crop an additional (i+1)-th column, e.g. from the left after cropping
columns 1 to i, we no longer just compare si with W̄min but use an interpolated threshold value
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(b)

(a) (c) (d) (e)

Figure 3.15.: We paint the saliency map that can be seen in the original image (a) and want to retarget
the image from landscape to portrait. We want to compare our default crop-threshold range
(β = γ = 1

2 , pictures (b) and (c)) with the fixed crop-threshold (β = γ = 0, pictures (d)
and (e)). Note that pictures (b) and (d) have the exact same aspect ratio. Pictures (c) and
(e) are only slightly taller. But in the case of the fixed crop-threshold we see a big crop-
difference between (d) and (e). Near the border the columns in (d) are visibly narrower
than in (a), but just not narrow enough to get cropped. In (e) however, these columns were
cropped and the image looks fine. Our improved approach, the threshold-range, generates
two almost identical, good-looking warps (b) and (c), just as desired.

from our threshold range [W̄ low, W̄ high], so we crop column i+ 1 of width si+1 if and only if

si+1 <

(
i

N
· W̄ low +

(
1− i

N

)
· W̄ high

)
.

The cropping from the right is done in the same way. To decide whether we should crop i + 1
columns, when starting from the last column N , we compare sN−i−1 with the same interpolated
threshold. Note that none of these bounds depend on the target ratio rt, such that we can prevent
the problems we outlined in Section 3.2.2 and shown in Figure 3.12. Without loss of generality
all of the above also applies to cropping rows.

We found that choosing a cell size factor L = 0.7, a crop-threshold ratio α = 0.5 and additional
parameters β = 0.5 and γ = 0.5 are appropriate default values. Note that our choice for the
minimum cell size factor L is with 0.7 considerably higher than in the crop-free method of
[Panozzo et al. 2012], where they used a default value of 0.2. Choosing a bigger factor, and
therefore less flexibility of the warp, in our method can be justified by the different definition of
the minimum cell size and the additional cropping.

Compared to the fixed threshold W̄ crop, this threshold range approach makes the cropping expe-
rience much more fluid and dynamic and significantly improves the retargeting quality. There-
fore, it is an essential part of our operator. A direct comparison is given in Figure 3.15.

3.3. Saliency

We implemented two basic salient feature detection methods in our application. The former is
a gradient magnitude filter while the latter is a face detector.
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(b)(a) (c) (d)

Figure 3.16.: Gradient-based automatic saliency detection. (a) Original image. (b) Gradient magnitude
after the convolution with the Sobel kernel along both axis. (c) Gradient magnitude after
dilation operation. (d) Auto-saliency on top of the original image.

3.3.1. Gradient-Based Saliency Detection

We start by creating a copy Ĩ of the input image I and resizing it to a fixed size of 250
pixels along the longer direction. This helps reducing the computational effort and removes
high-frequency noise from high-resolution images. Then we convert this image from RGB to
grayscale using the conversion weights from the luminance Y -channel conversion in the Y UV
and Y IQ color spaces

Y = 0.299 ·R + 0.587 ·G+ 0.114 ·B.

Next we convolve this image with the Sobel gradient kernel along both the x- and y-axis which
creates two matrices Gx and Gy that contain the two components of the approximated gradient
in each image point:

Gx =


−1 0 1

−2 0 2

−1 0 1

 ∗ Ĩgray and Gy =


−1 −2 −1

0 0 0

1 2 1

 ∗ Ĩgray.

Then we build the gradient magnitude array G, as G(x, y) =
√
Gx(x, y)2 +Gy(x, y)2 and

normalize and round it to the byte value range [0, 255]. Finally, we perform a dilation operation
to emulate a brush-stroke-like effect. This also fills up small holes in the gradient map and looks
similar to manually painting along each contrast-rich edge of I . Formally, we can define our
dilation operation for some radius d as follows:

D(G)(x,y) = max
dx,dy s.t.

√
dx2+dy2≤d

G(x+ dx, y + dy),

where we used d = 4 in our implementation. Figure 3.16. illustrates the kind of saliency maps
we get this way.

3.3.2. Face Detection

Since even slightly stretched faces are easily observable, detecting and marking faces as salient
image parts is very helpful. Standard face detectors like the one by [Viola and Jones 2004] or
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Figure 3.17.: Face detection. Given the rectangle, where the face was detected, we paint saliency inside
a cubic ellipsoidal shape with a cubic intensity decay towards the border.

the one implemented in the iOS system frameworks return a set of axis-aligned rectangular
subwindows, each assumed to contain a face. Such a rectangle roughly containing the mouth
and both eyes extends from below the chin up to the hair line. To better approximate the form
of a head we use a cubic ellipsoidal shape. For a rectangle with center (cx, cy), width rx and
height ry, this is the following set(x, y) ∈ R2 |

∣∣∣∣x− cxrx

∣∣∣∣3 +

∣∣∣∣y − cyry

∣∣∣∣3︸ ︷︷ ︸
=: r

≤ 1

 .

To further provide a brush-like look we let the intensity slightly decay towards the border. We
use again a cubic form. For a pixel (x,y), we set its intensity to (1 − r3) times the maximal
saliency value. In Figure 3.17, the saliency maps generated with this face painting technique
can be seen.

These two automatic filtering methods provide some basic saliency detection but are far inferior
to state of the art filters like the ones by [Cheng et al. 2011] and [Perazzi et al. 2012]. However,
they are useful to provide a good starting point for the manual refinement of the saliency map.
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4
Implementation

In this Chapter, we outline parts of our application that are not directly related to the retargeting
operator we propose. We focus on the limits and challenges of retargeting images on mobile
devices.

Section 4.1 explains how we solve the quadratic program. We take a detailed look on how
to construct the input matrix Q efficiently and other potential bottlenecks of the retargeting
pipeline.

In Section 4.2, we present a novel user interface for painting saliency directly onto the retargeted
image. Also, we display the cropping decision and allow interactive refinement.

4.1. Solving the Quadratic Program

To solve the quadratic convex optimization problem given in Equations 3.1 to 3.7, we generated
a self-contained solver using CVXGEN by [Mattingley and Boyd 2012a]. The solver generator
is availble online at http://cvxgen.com. The problem statement in the input language of
CVXGEN can be found in the appendix A.1.

We use a fixed grid size of 25 × 25 cells. To run it on iOS, we translated the generated solver
from C to Objective-C to obtain an encapsulated solver class. The solver takes 10 milliseconds
on an iPad 2 (Apple A4 chipset) and 6 milliseconds on an iPhone 5 or iPad 4 (Apple A6, A6X
chipset) to optimize the grid.

This does not include the time we need to prepare the input matrix Q. As we saw in Section
3.1.2, Q is built as the sum of two inner products of two matrices K ∈ R625×50 and L ∈ R50×50.
If we just implemented KTK as straightforward matrix multiplication, this would noticable
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Figure 4.1.: Distribution of the non-zero entries in KT .

degrade our performance. If we look at the sparsity pattern of K, visualized in Figure 4.1,
we see that every row of K has only two non-zero entries. To exploit this fact, we wrote
a lightweight matrix library, which stores sparse matrices in the compressed column storage
format. We compress each column by only storing the non-zero values and the corresponding
row indices. This is best explained in a small example:



5 0 0

0 2 0

0 0 0

1 0 7

0 3 0


⇒

values =


(5, 1)

(2, 3)

(7)

indices =


(1, 4)

(2, 5)

(4)

sizes = (2, 2, 1).

For the inner product multiplication, we then only need to consider summands where at least
one of the two factors is non-zero. Also, the Laplacian matrix L is sparse and only contains at
most two non-zero entries per row and column.

We also expanded the matrix multiplication in Formula (3.11) to minimize the computational
impact of the spline upsampling. In our implementation, about 60 percent of the CPU time is
spent in the CVXGEN-solver while the rest is spent assembling the energy matrix, rendering in
OpenGL and in UI-related computations.

4.2. Interface

Our application features two main screens. In the library view (Figure 4.2), the user can store,
browse, select or delete the images she wants to retarget.

In the editor screen (Figure 4.3), the retargeted image is either shown filling the entire screen
or side by side with the original image. The user can paint saliency by pointing and dragging
the finger accross the image. She can switch back and forth to erasing saliency by tapping the
brush icon in the toolbar. To change the target ratio, the user can either select from a list of
predefined common aspect ratios or continuously resize the image using a two finger up/down
swipe gesture. With a two finger pinch gesture, the user can enlarge the image and then paint
smaller salient regions in more detail.

We also optimized the iPhone-sized counterparts of these screens to accommodate all necessary
tools in the smaller space, see Figure 4.4.
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choose picture from library

take picture show help

show information

tap to edit pinch to scale press and hold to delete

Figure 4.2.: The library interface on the iPad.

4.2.1. Fixed-Point Grid Stabilization

Given the small screen sizes, the side by side view in the editor does not allow very detailed
saliency painting. Therefore, we combined the saliency map and the retargeted preview into
a single image. Whenever the user starts painting by moving a finger across the canvas, we
overlay the saliency map and continuously update the underlying warp.

However, if the positions of the borders of the image are fixed and we change the image un-
derneath the user’s finger, a major problem appears. When the user paints saliency at a point
p1 into the already retargeted image I ′1, this new saliency information leads to an updated retar-
geted image I ′2. So potentially, another part of the image than the one the user started painting
on is located at position p1 now. The painting motion would continue at a point not intended
or even foreseeable by the user. By p2, we denote the position where in I ′2 the same part of the
image as at p1 in I ′1 is located. Figure 4.5 illustrates this behaviour.

Such unexpected movement underneath the finger can make it hard for the user to draw simple
shapes like lines or circles onto the saliency map. We propose the following solution for this
problem, which we call fixed-point grid stabilization. Instead of fixating the border position of
the image during painting, we fix the point where the user currently applies the brush and study
how it changes from I ′1 to I ′2. Now we keep the part under the finger the same by comparing
the two position p1 and p2 and then translating the whole image I ′2 such that p2 is now at the
screen coordinates of p1. In Figure 4.6, this fixed-point stabilization is outlined. To implement
this stabilization, we first look up the position p1 given in screen coordinates in the grid G′1 of
I ′1 and we store this position as a barycentric coordinate in a cell of the original picture grid G.
After updating the deformation, we use our new mapping from G to G′2 to retrieve p2, and we
center the view so that p2 is below the finger.

We experimentally discovered that this technique helps to make the painting process more intu-
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take picture

close project and store saliency to disk

preferences and parameters
export to camera roll

choose picture from library

reset saliency
automatic saliency

pick aspect ratio

side-by-side view

show/hide saliency

tap and move to paint swipe to change the target ratio

brush / eraser for saliency map painting

pinch to zoom

Figure 4.3.: The editor interface on the iPad.

(b)(a)

Figure 4.4.: The editor interface on the iPhone. (a) The combined view where we directly paint onto
the retargeted image. (b) Split view where we see the original image on the left and the
retargeted image on the right.
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I ′1 I ′2

p1 p2
p1

Figure 4.5.: Changes in the saliency map can cause the point underneath the finger to move around. Here
the user paints on p1 in image I�1. In the updated image I�2 this point moved to position p2
as the underlying grid changed due to the new saliency information. At position p1 another
part of the image is located now, which the user probably does not want to paint on.

I ′1
I ′2

p2p1

Figure 4.6.: We compensate the motion of the painted point from p1 to p2 by translating the whole image
in the opposite direction. Then the point underneath the finger will stay exactly the same -
independent of how much the underlying grid changes.
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I I ′ I ′

(b)(a) (c)

Figure 4.7.: Projection of the brush shape. (a) Circular shape in the original picture. (b) Projection
inside a grid cell is an ellipse. (c) Projection across all grid cells involved gives a piece-wise
ellipsoidal shape.

itive. It is particularly effective when the user tries to accurately trace the border of an object.

We also similarly apply the warp to the saliency map when we display it on top of the retargeted
image. For the shape of the paint brush, we use a circular form with a linear intensity decay
along the radius. As this shape is applied in the unretargeted saliency map, its appearance in
the retargeted image gets piece-wise ellipsoidal. This means that inside each grid cell the brush
is projected to an ellipsoidal shape. As the brush extends over several grid cells, the projection
will be a composition of partial ellipses as indicated in Figure 4.7.

In practice this piece-wise ellipsoidal shape is hardly ever distinguishable from a single ellipse
or even a single circle. So we do not need to worry about possibly strange-looking brush shapes
as in Figure 4.7. Then in order to be different from a single ellipse, the grid cells beneath the
brush need to be deformed differently from each other. But as we paint saliency information by
applying the brush, the optimization will try to deform these cells equally and therefore creating
a shape similar to a single ellipse. We dynamically adapt the size of the brush to always keep it
the same size on the display. For instance, if the user zooms into the image less of the original
content is visible on the screen. So we paint onto the original image with a smaller brush radius.

4.2.2. Crop Preview

To show the cropped parts of the image in real-time, we show them during saliency painting as
rows and columns that stick out of the retargeted picture frame (Figure 4.8). We show cropped
rows and columns semi-transparent on top of the white picture frame; the background is also
textured to clearly allow to see the cropped part, even if it is semi-transparent.

The widths of the cropped columns are not produced by our final optimization (they should be
zero), but we need a non-zero value for visualization purposes. We use the values computed in
the first optimization, i.e. the values in the grid G�1 (see Section 3.2.2). The cropped columns
are then narrower than the threshold, but also at least �W̄min. So we do not waste too much
display space for the cropped part, but we are also guaranteed that they will not disappear. The
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(b)(a) (c)

Figure 4.8.: Crop Preview. (a) The user is painting saliency, but nothing has been cropped yet. (b) A
few rows get cropped. The whole image is moved to keep the point beneath the finger fixed.
(c) After the user stopped painting the image is recentered. We can see the preview of the
cropped rows below and above the salient part. The white border frame depicts the size of
the retargeted image.

cropped rows are treated in the same way.

Showing the cropped part allows the user to refine his cropping decision by simply painting
into the cropped part. Our fixed-point grid stabilization algorithm provides a fluid transition
of a cropped part back into the retargeted image. Figure 4.8 shows our interface for the crop
preview. By just tapping onto the screen the user can show and hide both the saliency map and
the preview of the cropped image for a quick estimate of the final result.

4.3. iOS technologies used

We conclude this Chapter by discussing a few of the iOS technologies we used in our im-
plementation. To encode, decode and rescale images, we used the UIImage class and some
CoreGraphics routines. The CIDetector face detector class is part of the CoreImage
framework. The smooth transitions between different layouts and saliency modes are real-
ized using the animateWithDuration:animations: method of the UIView class,
which is part of the CoreAnimation framework. To display the help and info panels, we
use a UIWebView and the project settings are stored in the app’s document folder and in
NSUserDefaults.

For rendering, we use OpenGL ES 1.1, which allows 2D texture mapping with bilinear inter-
polation, using an orthogonal projection. On recent iOS devices, a maximum texture of size
2048 by 2048 can be used and we thus rescale the images to this resolution for rendering pur-
poses. For the final export at the original image resolution, we render multiple images and we
stick them together without using OpenGL. The class GLKView takes care of the render buffer
management and the EAGLContext manages the OpenGL state when we draw into several
seperate views. We create the geometry on the fly by triangulating the rectangular grids G
and G′ in both the image and texture space. To minimize aliasing artifacts for high resolution
images, we use mipmaps.
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5
Results

5.1. App Performance

Our implementation for iOS allows refining the retargeted image in real time. When painting
saliency, resizing the image or tweaking parameters, we achieve a steady frame rate of 60 fps
on both the iPhone 5 and iPad 4. This allows a fluid and interactive user experience.

To export a retargeted image in full resolution, the app takes about 5 seconds to create a 6
megapixel image; or roughly one second per megapixel. The rendering is split into several
small patches that fit into the OpenGL framebuffer. 80 percent of the time is spent rendering
and stitching these patches back together. Encoding and saving the final image to the iOS
camera roll takes 15 percent of the time. The warp optimization itself takes less then a percent
of the time as we only need to calculate it once.

The automatic saliency map generation takes about a second. 60 percent is spent on the iOS
face detection API and 35 percent on the dilation operation on the image gradient.

The whole workflow from import and automatic saliency detection to the interactive refinement
of the saliency map, the choice of the target aspect ratio and the final export takes about 30
seconds of user time. To perform the RetargetMe benchmark, we spent 90 seconds per image
on average.

We also found our app to be engaging and fun for people who were previously unaware of
image retargeting. A short introduction of 20 seconds was enough to get them started and let
them explore the functionalities of the app on their own.
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5. Results

(b)(a) (c) (d)

Figure 5.1.: Advantages of cropping (a) Original image. (b) Retargeting to portrait ratio without crop-
ping. We can see the deformation near the border, e.g. in the inscription of the ferry as well
as the at the cables of the ropeway. (c) Just by enabling our cropping operator, we get rid
of the artifacts we saw before. (d) We painted a different saliency map for this wider aspect
ratio to indicate what can be cropped vertically.

5.2. Retargeting quality using Cropping

The cropping capabilities we added to our operator (see Section 3.2) did prove to be very useful.
Figure 5.1 (b), (c) compares the results with and without cropping.

We found that in most situations the regularization term is not needed at all when using crop-
ping. This is because we use a big minimum cell size for cropping and therefore the flexibility of
the grid is already constrained a lot. The default values of wreg = 0, L = 0.7, α = β = γ = 0.5
and spline upsampling to a grid of 50× 50 cells are sufficient in most pictures.

The user can therefore focus on painting the saliency map. However, the semantics of this map
changed when using cropping. Before, the purpose of the saliency map was to indicate which
regions should not change their proportions. We found that now we end up painting the regions
that we do not want the optimization to crop. On one hand this allows quicker editing as not all
salient details need to be painted anymore. On the other hand the saliency map should now be
optimized to the specific target ratio. Figure 5.1 (c), (d) shows how we use different saliency
maps for different target ratios to indicate what we want to keep in the retargeted image.

5.3. RetargetMe Benchmark

Using our cropping operator, we retargeted all 86 images specified in the RetargetMe bench-
mark by [Rubinstein et al. 2010]. Figure 5.2 compares a few of these pictures with other oper-
ators. The full comparison table is provided in the additional material on the CD.

In all images, we used the default parameter values and just painted the saliency map. We used
the default brush size and did not zoom into the image, so we just painted what we could see on
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5.3. RetargetMe Benchmark

SVCR MULTIOP AAIR our operatororiginal

Figure 5.2.: RetargetMe benchmark comparison. We compare manual cropping (CR), stream-
ing video (SV) [Krähenbühl et al. 2009], multi-operator media retargeting (MULTIOP)
[Rubinstein et al. 2009] and axis-aligned image retargeting (AAIR) [Panozzo et al. 2012]
with our opproach.
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(b)(a)

Figure 5.3.: Automatic retargeting. (a) Automatically detected saliency map. Note that also the face of
the pumpkin was recognized and marked as salient. (b) Retargeted to 75% width, as in the
RetargetMe benchmark.

the display of the iPad. For some images, we just kept the automatic saliency map, for instance
for the child picture in Figure 5.3. In general, the automatic saliency detection works well for
pictures with a small depth of field, i.e. pictures with a blurred background. High-frequency
backgrounds (like leafs, grass or geometric patterns on buildings) are problematic. In those
pictures, we found it easier to paint the saliency map from scratch by hand.

5.4. Applications

We show a simple practical application of our operator in the library view of our app. To display
a gallery of pictures, two ways are often used: Either the pictures are homogeneously scaled
down to fit into a regular grid or a squared central part of the image is cut out and scaled. Both
of these ways can be seen in the iOS picture gallery (Figure 5.4 left) and in the iOS image picker
(Figure 5.4 right) as well as on many web galleries like Picasa or flickr. While the first way does
not use the screen space efficiently, the second way often crops important content.

We propose a new gallery format. We use squared thumbnails to fill all available screen space.
Inside this square area, we render a retargeted image based on the saliency map the user painted
the last time she edited this image. This way we crop if possible and warp if necessary to get
the best out of both formats. Figure 5.5 shows this gallery for some of the benchmark pictures.

5.5. Limitations and Future Work

Our greedy approach to cropping has some limitations. Especially in images where the salient
content is concentrated in an area smaller than the target image, our operator might crop more
than necessary. The retargeted image then contains stretched unsalient parts which can be seen
in Figure 5.6 (b). If we cropped and optimized the warp at the same time, as suggested in
Section 3.2.1, this problem might be addressed. But by doing this, we could not use our specific
high-performance convex solver and would lose our real-time performance. Also, such cases
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5.5. Limitations and Future Work

(b)(a)

Figure 5.4.: iOS picture gallery (a) and image picker (b).

(b)(a)

Figure 5.5.: Our gallery using retargeted square thumbnails. Both on the iPad (a) and iPhone (b).
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5. Results

(b)(a) (c)

Figure 5.6.: Limitation of our greedy cropping approach. (a) Original image. (b) When only painting
the people too many columns will be cropped and the top and bottom of the resulting image
is distorted. (c) By simply painting a bit more saliency, the user can quickly correct this
cropping decision.

can be quickly corrected manually just by painting a bit more saliency, as shown in 5.6 (c).

The limited flexibility of the underlying axis-aligned deformation noticeably constrains the
warp in situations where shearing and local rotations might be preferred. Also, our operator
can not guarantee the preservation of straight lines that are not axis-aligned.

The fixed-point grid motion stabilization proves to be very helpful in order to paint directly onto
the retargeted image. In a few special cases, our implementation is not able to keep the finger’s
location fixed. These situations occur when the cropped region changes quickly and the preview
of the cropped rows or columns expands over a large part of the screen. A more sophisticated
balance between screen layouting and motion stabilization could address this problem.

In their user study, [Rubinstein et al. 2010] studied if it is important whether the original un-
retargeted image is shown to the viewer or not. They found the following main difference:
without the reference image, cropping was almost always the preferred choice, as it does not
deform the image. When the original image was shown side by side the loss of content became
apparent and so in that case, the SV and MULTIOP operators ranked just as good as manual
cropping. So having the original image directly available for comparison while drawing the
saliency map can be helpful in some applications. For this reason, we provide an easy way to
switch to this side by side view in our app, even though the combined view makes much better
use of the available screen real estate.

As our approach only crops whole columns and rows of our grid, the coarse grid resolution of
25× 25 cells restricts the precision of the cut. In future work, we could try to increase the grid
resolution or to find a way to partially crop rows and columns. Also, it would be interesting to try
out other, more sophisticated cropping approaches and to compare their quality and efficiency.

It would be interesting to integrate our retargeting operator into a mobile web browser to dynam-
ically optimize the pictures and their layout on any webpage to the given screen size. Another
intriguing continuation of our work would be to expand our operator to video retargeting. The
speed of our method might allow real-time video retargeting even on mobile devices.
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6
Conclusion

We presented a novel content-aware image retargeting operator. Our operator uses an axis-
aligned deformation to retarget an image, and it combines them with cropping to enrich the
solution space and to reduce the distortion. Based on an interpolated crop threshold and two
energy minimizations, we get a fast and robust algorithm. We can guarantee the absence of fold
overs and we can control the smoothness of the warp.

We implemented our algorithm on iOS, and we showed that it runs at interactive frame rates.
The user interface has been optimized for touch input and to be used on mobile devices with
small screens. To expose all parameters of the retargeting operator to the user in a intuitive
and suitable way, we developed new tools to modify the saliency map directly on top of the
retargeted result; showing a single picture allows us to use the limited screen space in the best
possible way.

We achieve a fluid experience by customizing every component of the retargeting pipeline for
mobile devices. The application is easy and fun to use and provides many options for more
experienced users.

To the best of our knowledge, this thesis is the first attempt to bring interactive content-aware
image retargeting to a mobile device. The source code of our implementation is available online
at http://github.com/grafdan/retargeting and our application is submitted for
review to the iOS App Store.
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A
Appendix

A.1. CVXGEN Problem Statement

Below, we state the optimization problem from Section 3.1.1 in the CVXGEN language.

dimensions
m = 25 # number of DOF along the height
n = 25 # number of DOF along the width

end

variables
# the first m elements are the heights of the rows
# the next n elements are the widths of the columns
st(m+n)

end

parameters
Q(m+n, m+n) psd # Q=A'A
B(m+n, 1) # the linear term that is zero for our energy
minH(m)
maxH(m)
minW(n)
maxW(n)
imageHeight
imageWidth

end
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A. Appendix

# energy term
minimize
#the energy is st'*Q*st + st'*B
quad(st, Q) + st'*B

# boundary terms
subject to

st[i] >= minH[i], i=1..m
st[i] <= maxH[i], i=1..m
st[m+i] >= minW[i], i=1..n
st[m+i] <= maxW[i], i=1..n
sum[i=1..m](st[i]) == imageHeight
sum[i=m+1..m+n](st[i]) == imageWidth

end
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